

 Specification for Implementation of Dragon/Tandy 6809 Based Network

 Written by Jon Bird

 Contributions by Oliver Broad, Jim Hart

 Issue 3 - August 1996

 Version 4 (5V CMOS)

 Page 1

 Network Spec V4.0

 Issue 3

 August 1996

 By J. Bird

Specification for the Implementation of 6809 Based Network V4.0

1. Introduction/Overview

This document describes the hardware and software protocol for a Dragon based

network. In all, this is the fourth attempt at networking Dragons/CoCos

attempted by us and this document has been up-issued/re-issued to reflect the

continuing progress of the project.

1.1 Revision History

Issue 1, August 1991: Initial Issue prior to hardware and software design.

Issue 2, October 1992: Issued upon completion of DNOS V1.1 DragonDOS based

network operating system.

1.2 Network Description

The network is designed to implement a single server/multiple station

configuration. The current solutions provide the following scenarios:

1.2.1 DragonDOS based network - October 1992

A single network server exists running a DragonDOS based disk operating system

(or equivalent) sharing out it's four floppy disks, and printer. Each machine

on the network (including the server) has a dedicated network card fitted. The

server program (DNOS SV1.2) is bootable from disk and provides a dedicated

server machine. Each network station contains the network operating system on

EPROM (DNOS V1.1) which provides a sub-set of DragonDOS type commands to

interface to the network. A number of other services are available such as

print sharing, network messeging etc.

1.2.2 OS9 Extension - August 1996

The existing network platform is extended to allow OS9 to run across the

network. This is achieved by the use of an extra Dragon providing the OS9

functionality. The network file server and OS9 server are tied together via a

fast parallel link. An OS9 Network Overlay (NETOS9) running on the DNOS server

intercepts OS9 network calls and passes them via the parallel link to the OS9

machine for execution. All 64K capable machines can BOOT to OS9 using the

normal method, once into the system the new network drivers provide the

functionality. ALL devices available on the server will be accessable to the

network if required. The OS9 server machine is not dedicated to the network and

can still be used if required.

1.2.3 DragonDOS OS9 Services - August 1996

A third option is available with the OS9 extensions - removal of disks and the

DragonDOS interface from the DNOS server. Via the use of a DOS extender

(DOSPlus 4 only at present) all DragonDOS disk accesses can be directed to the

OS9 machine therefore negating the need for additional drives and interfaces.

2. Hardware Definition

2.1 Network Cards

This network is to be implemented via the use of dedicated network cards for

 Page 2

 Network Spec V4.0

 Issue 3

 August 1996

 By J. Bird

each machine on the network. A 'standard' network card design has evolved which

interfaces to the Dragon computer via two 16 way IDC connectors, however it is

feasable to embed a network card into a larger design layout as required. For

the purpose of this document however, the standard plug in card is assumed.

Each station on the system will have one of these cards fitted. During

development, the network cards are built on stripboard. Each card is

constructionally identical, apart from the server which has no software memory

fitted. The interface to the Dragon is via 2 16 way IDC sockets (1 on server

cards), comprising bus & control signals. The card can be connected directly to

the Dragon's cartridge port through a suitable connector. No other logic is

required, and the card can use the IO memory mapped via the P2~ decode signal.

On the file server, additional hardware is required to map the card in with the

DOS and as such the IO address is configurable in software. The network

interface is a 2 wire cable connectable via a 3.5mm socket.

Each card will consist of the following:

* MC6850 ACIA - serial chip to drive the network

* Direction logic - direction select for the card TX/RX.

* Network ID - 8 DIL switches to provide a network ID for the card

* Address decoders & network buffers

On network stations:

* 8K Program Memory - 8K EPROM containing the network software

 (during development uses 8K SRAM or E^2PROM)

The network card appears to the Dragon as 4 bytes of IO, comprising the 6850's

Control/Status register, Data register and the Network Direction bit & network

station ID. On network stations, the 8K of Program Memory appears at $C000:

IO Base#

 0 MC6850 Command/Status Register

 1 MC6850 Data Register

 2 WRITE: Bit 0: Network Direction

 0 = RX

 1 = TX

 READ: Network ID

 3 As byte 2.

The IO Base is $FF40 on network stations, and is software configurable on the

server.

2.2 OS9 Parallel Link

The parallel link required to tie the DNOS server with the OS9 server is

achieved by either a dedicated 8-bit parallel link (usually via a MC6821 PIA

chip) or through the parallel printer ports (back to back) or a combination of

both. The standard STROBE/ACK transfers are used. Overlay software exists for

using the printer port on the DNOS server and a dedicated PIA on the OS9

server.

 Page 3

 Network Spec V4.0

 Issue 3

 August 1996

 By J. Bird

2. Software

The following section defines the software requirements for both server and

network station.

2.1 Software Layer 1 - Network Packet Drivers

Two key operations directly interface to the network I/O area (defined in

section 1) implementing the transmission and receipt of a network packet. These

operations are used in all communications to and from the network and are

essentially the same for both DragonDOS network stations/server and OS9.

The two operations are:

NETOUT - Write a data packet

NETIN - Read a data packet

The packet structure is defined below:

$00 * 2 HEADER BYTES

$FF SYNC BYTE

1 MACHINE NUMBER BYTE

1 COMMAND REQUEST BYTE

1 ERROR BYTE

1 STREAM NUMBER BYTE

1 BLOCK LENGTH BYTE

3 BYTE CURRENT FILE POINTER

1-256 DATA BYTES

1 CHECKSUM BYTE

The calling software supplies all the information to be sent apart from the

header/sync bytes, machine number (which is obtained from the network card

hardware) and checksum byte via a data structure which is passed to/from the

packet drivers. For the most part, the only mandatory part of a packet is the

Command Request byte which is used by the network server to identify the

operation that is being requested - the other information may be unused or re-

defined depending on the purpose of the network packet.

2.1.1 NETWORK BLOCK IN COMMAND (NETIN)

The NETIN command's operation is to pull in a network data block (defined

above). In addition, a 24 bit number is to be passed to the command specifying

a time out delay, and where 0 represents no timeout. NETIN will wait for the

required time period for data arriving on the ACIA. The delay is purely based

on a decrementing counter loop and as such will vary dependent upon the clock

speed of the processor. If none arrives within the specified time interval, an

error code indicating timeout is placed in the B register and the command

aborted. Once the first byte of the block ($FF) is received, a shorter timeout

is used on all subsequent blocks, allowing a faster return to the calling

routine should the serial stream stop in mid flow. NETIN will also check the

station ID within the network block, and if it fails to match the hardware ID,

then the recieve is aborted, and the command looks for the first sync byte

again. When all the incoming data has been received, the 256 byte data buffer

is checksummed and compared against the transmitted checksum. If any serial

corruption occurs, or a checksum failure occurs, an appropriate error code is

returned in the B register. The Zero bit of the CC register is clear if no

 Page 4

 Network Spec V4.0

 Issue 3

 August 1996

 By J. Bird

error occured.

2.1.2 NETWORK BLOCK OUT COMMAND (NETOUT)

The NETOUT command waits until the ACIA's TX register is empty, and sends the

network block out byte by byte. NETOUT will also perform the checksum on the

data block.

2.2 Software Layer 2 - Basic Network Protocol

The following section defines the basic protocol used to implement the network.

2.2.1 Network Server

The network server will operate on a polling operation. The server will use

NETOUT to send to each station in turn a request for a command. It will then

call NETIN with a small timeout delay, awaiting a station's response to a

request. If NETIN times out, or returns an error the polling loop continues. If

a valid request is received, the Network Command Byte is extracted and used as

an index into a jump table of valid commands. The operation will then perform

the required command, set the top bit of the Command byte and return a data

packet via NETOUT. Control is then passed back to the network loop.

2.2.2 Network Station Command Processor

On the network stations, a software interface is provided to perform the

network handshake, therefore negating the need for the user to call NETIN and

NETOUT directly. The calling procedure will provide a network packet to be sent

to the Command Procesor. The processor will then call NETIN to look for the

attention request packet sent from the server targetted to this station. When

one is detected, the supplied packet is then passed to NETOUT for transmission.

The NETIN operation is then called again to await the response from the server.

If a corrupted or invalid response is received (for example another request

packet possibly indicating the server has discarded our request) the entire

process is repeated a number of times. Atfer the maximum allowed attempts has

been exceeded, the command processor will exit with the last NETIN error code

in the CPU's B register.

If a valid response packet is received, it is then used to overwrite the

calling operation's supplied packet. Prior to returning, the Error Byte in the

packet is copied into the CPU's B register setting the Zero bit appropriatly.

2.3 Software Layer 3 - User Interface

Sections 2.1 & 2.2 defined the basic operation of the network. This section

goes on to describe the developed software both for DragonDOS and OS9 which

implements this protocol and provides links into the operating system to make

use of it. This will start off with the basic DragonDOS implementation and then

move onto the OS9 layer which has been added. Although the DragonDOS network is

not strictly relevent for implementing the OS9 network, since it is built on

top of the DragonDOS one (in fact, there is no existing OS9 network server as

such) this section should not simply be ignored.

2.3.1 The Dragon Network Server

The basic operation of the server has already been defined. The software to

 Page 5

 Network Spec V4.0

 Issue 3

 August 1996

 By J. Bird

implement it runs under the DragonDOS (or compatible) system and consists of

aproximately 1K of position dependent 6809 assembler. The source is for the

DSAM assembler. The server code itself comprises the NETIN, NETOUT and primary

server code. It also comprises a background print manager whereby print

requests from the network are spooled onto (DragonDOS) disk files then printed

in small sections so as not to halt the network. The remainder of the server

code is dedicated to implementing the first 16 entries in the jump table which

provide the network interface into DragonDOS and provides full network access

to DragonDOS floppy disks. The remainder of the vector table is free to be used

for other network operations. The initial 16 entries can also be used if

DragonDOS support is not required with one exception - command request $0C is

used as the Network Attention packet id and cannot be used.

The full list of DragonDOS supported calls is listed in section 2.3.2.

The network server software primarily utilises graphics page 2 starting at

$0C00 in memory through to $1200 as it's workspace which comprises most of the

user defined settings which affect the operation of the server. A supporting

BASIC program is utilised to start the server up, this includes setting the

ACIA address in the workspace area, defining the available floppy drives (this

information is read from a disk configuration file) and loading up any server

extenders that may be implemented. Finally, it executes the server assembler

code.

Server extenders are separate assembler modules, which add to the capabilities

of the main server program. They utilise the server workspace to determine the

location of the network vector table and add new function calls to it (for

example a network 'chat' system). The main server program will jump to these

vectors which will then perform the operation requested of them before jumping

back into the main server code via a predefined vector to send the response

network packet back. All the network packet information and buffers is held in

the predefined workspace of the main program.

2.3.2 DragonDOS Network Station

The code for a network station consists of aproximatly 5K of 6809 assembler

held in 3 separate source code files for the DREAM assembler called DNOS V1.1.

This code is designed to support access to DragonDOS disks across the network.

It is held in EPROM in the cartridge memory area of a Dragon as part of the

network card, normally where DragonDOS resides starting at $C000.

This code provides two levels of software: an interface to the Network Command

Processor to issue all the required DragonDOS disk calls to the network and a

set of BASIC commands identical to those used under DragonDOS to provide BASIC

disk IO functions across the network.

2.3.2.1 Network Interface Level

As well as comprising the standard packet drivers and network command

interface, it also provides the ability to perform the basic DragonDOS

commands normally held in the DOS indirect jump table at [$C004] across a

network. This will enable standard DOS commands to be implemented easily on

the stations and allow any machine code programs to work correctly. In order

to achieve this, each command has a valid Network Command number, and the

relevent paramaters to the command passed within the data packet. The Network

Command Processor operation will be used to issue the command.

The following table details each command, its appropriate jump table address

 Page 6

 Network Spec V4.0

 Issue 3

 August 1996

 By J. Bird

and the Command byte number.

Command Jump Table Net ID No. Comments

Network Command Proc. [$C004] - replaces disk op. proc

Ptr. to Network Pkt [$C006] - replaces disk op. blk

Copy file details [$C008] - local command

Get dir entry/cpy Ctrl [$C00A] 1

Create directory entry [$C00C] 2

Get file length [$C00E] 3

Close all files drive [$C010] - Not applicable

Close a file [$C012] 4

Load a file block [$C014] 5 Multiple calls

Write buffer to file [$C016] 6 Multiple calls

Count free sectors [$C018] 7

Kill a file [$C01A] 8

Set file protection [$C01C] 9 not return Y register

Rename a file [$C01E] A not return Y register

Get directory record [$C020] B not return U register

Find free buff/read sec [$C022] - not applicable

Copy dir sects 20 to 16 [$C024] - not applicable

Network Attention - C issued by server

Retry block - D no longer used

Read absolute sector [$C026] E additional features

Write absolute sector [$C028] - not applicable

Verify absolute sector [$C02A] - not applicable

Format disk [$C02C] - not applicable

Base of error table [$C02E] -

COPY command - F needed for server

Notes

Commands marked as 'not applicable' will return a code 8 (?FC error) in the B

register when called. These are commands which will not be implemented due to

possible serious data loss of other users dta. The read sector call has been

implemented to allow the BASIC BOOT command, and SREAD which allows for S/W

directories in many programs. A variant on the command exists, to allow access

to the direct track/sector reads on the disk command processor on the server.

The exact interface to these calls is defined in any DragonDOS or compatible

user guide.

The Network Command Processor & command block structures supercede the DOS

command processor at $C004-7.

A DNOS User's guide is available which defines the exact interface to these

routines and gives examples of using the Command Processor.

2.3.2.2 DragonDOS BASIC Interface

The final layer of software on the network stations is the BASIC Interface

implemented by providing a DragonDOS set of commands. These commands make use

of the jump table at $C004 to perform network commands, and essentially

involve a re-write of the DOS BASIC commands to sit on the network software.

The process involves setting up a new BASIC token & vector jump table for the

 Page 7

 Network Spec V4.0

 Issue 3

 August 1996

 By J. Bird

commands, providing the patches into the BASIC RAM hooks and writing the

commands. The BASIC interface will emulate a DOS ROM on boot up, providing a

title screen & performing required initialisation of data and the serial chip.

The commands are/will be implemented according to the following schedule:

 Network BASIC Commands Schedule

SRAM versions:

PRELIM = Minimal Network orientated commands (eg. LOAD, SAVE, KILL etc.)

 (Train development begins)

V0.0 = Support of simple DOS commands (eg. FRE$, HIMEM etc.)

V1.0 = Filing commands implemented. Additional DOS commands.

EPROM versions:

FULL = First EPROM version. Should be a cut down DOS minus FREAD type comms.

PLUS = Future development to bring NOS fully compatible with DOSPLUS.

STATUS CODES:

0 = Not implemented.

A = Partly implemented.

B = Provides some DOS compatibilty.

C = Fully DOSPLUS compliant.

? = Uncertain at this time.

UPDATE HISTORY

14.02.92: First edition

22.03.92: PRELIM version completion date.

 Updation of command status codes.

25.05.92: V0.0 completion date.

 Updation of command status codes.

 Enable sector read calls on server & net stations.

31.08.92: V1.0 completion held up by technical problems on file input. Updated

 to show present command status. Lower level re-design will occur

 before FULL version commences. Source code in DREAM format.

13.11.92: FULL version complete (includes under V1.0 not implemented last

issue

 & lower level re-design). Testing to continue to remove any bugs.

 EPROM target for pre '93.

 No development for PLUS version planned.

COMMAND Status PRELIM V0.0 V1.0 FULL PLUS

AUTO Yes 0 0 0 C C

BACKUP Not applicable 0 0 0 0 0

BACKUP DIR Not applicable 0 0 0 0 0

BEEP Yes 0 C C C C

BOOT Yes, through ABS sect 0 0 C C C

 Page 8

 Network Spec V4.0

 Issue 3

 August 1996

 By J. Bird

CHAIN Pushed out for PLUS 0 0 0 0 C

CLOSE Yes 0 0 B B C

COPY Under V1.0, not tested 0 0 A A C

CREATE No current plans 0 0 0 0 ?

DIR Yes B B B C C

DRIVE Yes C C C C C

DSKINIT Not applicable 0 0 0 0 0

EOF Yes, complete for FULL 0 0 0 B C

ERL Yes 0 C C C C

ERR Yes 0 C C C C

ERROR GOTO Yes 0 C C C C

FLREAD No current plans 0 0 0 0 ?

FREAD No current plans 0 0 0 0 ?

FRE$ Yes 0 C C C C

FREE Yes C C C C C

FROM No current plans 0 0 0 0 A

FWRITE No current plans 0 0 0 0 ?

HIMEM Yes 0 C C C C

INPUT Yes, complete for FULL 0 0 0 B C

KILL Yes B B B C C

LINE INPUT Yes, complete for FULL 0 0 0 B C

LOAD Yes B B B B C

LOC Yes 0 0 A B C

LOF Yes 0 C C C C

MERGE Yes for FULL 0 0 0 B

OPEN Yes 0 0 A B C

PRINT Yes 0 0 A B C

PROTECT Yes C C C C C

RENAME Yes B B B B B

RESTORE Yes 0 C C C C

RUN Yes 0 C C C C

SAVE Yes B B B B C

SREAD Yes (S/W DIRs) 0 0 C C C

SWAP Yes 0 C C C C

SWRITE Not applicable 0 0 0 0 0

VERIFY Yes, dummy command 0 0 C C C

WAIT Yes 0 C C C C

LPRN Extra:set to local PRN 0 0 C C C

NPRN Extra:set to net PRN 0 0 C C C

Last Updated: 13.11.92

PRELIM complete:Current status reflected.

V0.0 complete

V1.0 complete: Minus data file input support

FULL complete: 1. Data file input fixed

 2. Network low level re-design complete - retry available on

all

 commands.

 3. NO FUTURE DEVELOPMENT PLANNED IN THE NEAR FUTURE.

Notes

Certain commands will not be implemented, since they will involve unauthorised

access by network users. These commands include DSKINIT, BACKUP and sector

 Page 9

 Network Spec V4.0

 Issue 3

 August 1996

 By J. Bird

write calls. The indirect jump table also does not support these commands. A

final EPROM version, targetted for the end of 1992, should support a majority

of DOSPLUS commands, with the exception of FREAD type commands & possibly

MERGE, CHAIN & COPY. Addition of these commands is an overall long term aim in

order to produce a fully DOSPLUS compatible network operating system. All

commands, will communicate to the Server calls to the indirect jump table. The

exception to this is the COPY command.

Two new commands are added to the BASIC command set to provide network

printing facilities - LPRN (set to local [parallel port] printer) and NPRN

(set to network printer). In network print mode calls to the printer device

(#-2) are intercepted by the file IO related BASIC RAM hooks to pass the

required data across the network using a reserved filename. The file server

software will then spool the data to disk and use it's background print mode

to print the file during network inactivity.

3. The OS9 Network

One of the aims of adding OS9 network capability was that the DragonDOS system

could be run in parallel with it and also that the OS9 Network Server could

continue to be used by another user if desired (ie. non-dedicated). During

1995 over several months various ideas and attempts were made to do this, with

the resulting system just about completed mid 1996. Since the two systems are

combined, it is worth reading up on the DragonDOS side of things prior to

referring to this section alone.

3.1 Network Station

The key components of the network station, once OS9 is up and running on it

are the Network File Manager (NBF), Device Driver (NET6850) and device

descriptors. All the device descriptors are technically the same - they are

all NBF classes of descriptor and contain the same information apart from the

device name. A descriptor needs to be present on the network station for each

device you wish to access that is present on the OS9 network server. For

example, if the network server supports a hard disk with a descriptor H0 then

in order to access this device a network descriptor also called H0 must exist

on the network station.

The Network File Manager provides the packaging up of the 12 standard OS9 IO

requests into standard Network packets (defined in section 2.1). For OS9,

Network Command bytes 128 ($80) onwards have been used:

OS9 Requests:

 NetI$Cre equ $80 OS9 I$Create

 NetI$Opn equ $81 OS9 I$Open

 NetI$Mdr equ $82 OS9 I$MakDir

 NetI$Cdr equ $83 OS9 I$ChgDir

 NetI$Del equ $84 OS9 I$Delete

 NetI$Sk equ $85 OS9 I$Seek

 NetI$Rd equ $86 OS9 I$Read

 NetI$Wt equ $87 OS9 I$Write

 NetI$Rln equ $88 OS9 I$Readln

 NetI$Wln equ $89 OS9 I$Wtln

 NetI$Gst equ $8A OS9 I$GetSta

 NetI$SSt equ $8B OS9 I$SetSta

 Page 10

 Network Spec V4.0

 Issue 3

 August 1996

 By J. Bird

 NetI$Cls equ $8C OS9 I$Close

A new definitions file (NBFDEFS) has been created which contains these equates

and other network definitions, including the packet structure.

For the most cases, NBF simply passes the request off across the network for

processing by the appropriate device on the OS9 server, collects the response

and returns to the caller.

The NET6850 device driver implements the packet drivers NETIN and NETOUT and

provides an interface to the Network Command Processor which NBF usses to

issue all network requests. The Command Processor is accessable via either the

READ or WRITE entries into the device driver. The device driver also

implements a new GetStat call for issuing User Defined packets across the

network. This allows normal OS9 programs to gain direct access to the network

for specific functions. One utility already exists which makes use of this

function - the NETIME program which obtains the system time from the OS9

server and updates the station's own clock with it.

Along with these, new SYSGO and INIT modules exist to set default network

devices, and automatically call the OS9 Login utility. There is also a

replacement OS9 BOOT module.

3.1.1 OS9 Network BOOT

The OS9 BOOT module is responsible for reading and loading the OS9Boot file

from disk which contains the necessary modules (apart from the OS9 Kernal)

with which to start OS9 on a workstation (eg. IOMAN, RBFMAN, KBVDIO, SHELL

etc).

On a Dragon, under DragonDOS the BASIC command BOOT is used to start this

procedure. This operation reads sectors 3 to 18 from track 0 off a floppy disk

into memory starting at location 9728 and then calls the code starting at

location 9730. On an OS9 boot disk, the OS9 Kernel (OS9p1 and OS9p2), INIT and

BOOT modules are placed into these sectors. After a piece of memory relocation

code, the BOOT module is called by the OS9 Kernel to load the bootstrap file

from disk. This is then accomplished by talking directly to the disk

controller to read the necessary sectors from disk. The structure, and format

of this boot file is defined in the OS9 System Programmers Guide.

The network OS9 is started in a similar manner. DNOS supports a BOOT command

which performs an identical function to the DragonDOS one. It issues DNOS Read

Logical Sector requests across the network to get the boot sectors in. The

Network OS9 boot module contains cut down versions of NETIN, NETOUT packet

drivers and Network Command Processor which it usses to continue to issue DNOS

Read Logical Sector requests to read in the OS9Boot file. Note that all these

requests are part of the DragonDOS network and are made to disks held on the

DragonDOS machine (command byte $0E) - they do not form part of the OS9

network at all.

Once the bootstrap is completed, the SYSGO module is called and the system is

started.

3.2 OS9 Network Server

There is no OS9 Network server as such, the existing DNOS Network Server is

 Page 11

 Network Spec V4.0

 Issue 3

 August 1996

 By J. Bird

utilised attached to the OS9 machine via a fast transfer link. Software exists

to use the parallel printer port of a Dragon Network Server to an MC6821 PIA

device driver on an OS9 machine.

The DNOS Server usses two Server extenders (NETOS9 and NETUDF). NETOS9 maps

the OS9 IO vectors issued by NBF into the server's jump table and provides

operations for handling them. NETUDF supports any User Defined calls

implemented by the system, in this case only handling the NETIME call. These

two modules exist as DragonDOS binary files and are loaded by the Server's

BASIC program.

Another piece of software is invoked either by the Server's BASIC program or

is booted into higher memory by a dedicated bootstrap piece of software. This

also is a DragonDOS binary which is called DOSSERV. Since this is not directly

concerned with the network this code is not covered in detail. At a very raw

level though it provides:

* A packet transfer mechanism similar to the network packets across the 8-bit

parallel printer port.

* Jump vectors for the 12 OS9 IO calls taking the same input/output parameters

as the OS9I$ calls. These are passed as parallel packets across the parallel

link for processing and the results retrieved and passed back to the caller.

In the longer term DOSSERV may turn into a fully fledged DOS extender allowing

DragonDOS files to be stored as OS9 files on the OS9 server. The DOSSERV

program normally runs from high RAM on a D64 at $E000.

The NETOS9 and NETUDF extenders simply translate the network packets into

calls to the DOSSERV program, translates the results back into network packets

and jumps back into the main server program.

3.3 OS9 Parallel Link Server

The OS9 Server machine is linked to the network server through a dedicated

MC6821 PIA and provides a new file manager (SBF), device driver (PIA21) and

descriptor (P1) with which to access it. This setup provides fairly 'raw' data

transfers allowing blocks of data to be read/written to/from the port and

GetSta/SetSta calls for configuring the PIA's port direction.

The OS9 server is controlled by the Net_Serv program, usually invoked as a

background task to allow the machine to continue functioning normally.

Net_Serv connects to the parallel link and awaits a parallel link packet. Upon

receipt of a packet, it identifies the type of packet then forks (or wakes up)

a module to process it (either OS9NetIO for IO requests or OS9NetUdf for User

Defined Requests). These service modules retrieve the packet, process it

(normally by calling an appropriate OS9 call with information extracted from

the packet) and return the information across the parallel link. They then

exit (or go to sleep) prior to sending a wakup message to the Net_Serv

program.

As it stands, a separate OS9NetIO module is forked for every station on the

network. After performing an IO request it goes to sleep. This ensures that

each station has it's own current data/execution directory because at present

NBF cannot keep track of these directories. Problems can arise because of

this, such as child processes changing directory on the network station also

 Page 12

 Network Spec V4.0

 Issue 3

 August 1996

 By J. Bird

affecting the parent's directory. A good example of this is the PWD command

which recursivly changes directory to the root of the disk always leaving the

user's current directory on the root. This is a definate problem which will

need to be resolved at some point.

The OS9NetUdf program only performs the NetTime operation and is forked every

time requested and terminates after use.

 Page 13

Dragon Network Card - Description

 The Dragon network cards were developed on a 58*29

 stripboard matrix. Connection is made via 2*16w IDC

 connectors which contain the processor's data bus, control

 lines, and the required address lines. The boards consist of

 some address decode logic, MC6850 serial chip, clock,

 buffers and an 8K EPROM. The card present on the file server

 has one of the IDC connectors omitted, and no EPROM as the

 software is on disk. Note: a ~ symbol denotes an active low

 signal.

 The main IDC connector caries the processor data bus (D0-

 D7), clock (E), read/write (R/W~), address lines (A0 & A1),

 power lines(+5V, 0V) and address decode line (AD~). On

 network stations AD~ should be connected to the P2~ line on

 the cartridge port, on the server this will need to be

 derived by some external address decoder. Each network card

 requires 4 bytes in the Dragon's I/O map. A dual 2 to 4 line

 decoder (74HC139) provides the decoding for the board. The

 'A' side of the chip is enabled by the AD~ signal, and

 depending on the state of the A1 address line, will either

 enable the 6850 (if A1 is low=lower 2 bytes) or the 'B' side

 of the decoder (if A1 is high=upper 2 bytes). The 'B' side

 will enable an octal buffer if 1 of the upper 2 bytes is

 read, outputing the state of a bank of 8 DIP switches on the

 data bus, or a quad latch chip for data direction.

 The data bus and associated control lines are routed to the

 required chips on the board (6850, 2732 EPROM & 74HC541 Quad

 buffer for network ID). The MC6850 ACIA is used as the

 driving output for the network. The chip interfaces to the

 processor via the databus, R/W~, E, and A0. The chip is

 enabled via the 74HC139 on the CS2~ input, the remaining CS

 lines being tied to ground. The chip is clocked by a crystal

 oscillator, connected to a 74HC4060 divider. On existing

 boards an 8Mhz crystal is used, with the 2nd lowest divider

 used to feed into the TX CLK & RX CLK on the 6850 giving a

 speed of aproximatly 15Kbps. Data to be output to the

 network is fed out of the TX line into a tri-state buffer

 (74HC126). This is controlled via the output of a latch chip

 (4042). When set high, data is sent through the buffer to

 the network cable. This data is also routed through another

 buffer on the 126 (permanently enabled) into the RX line for

 diagnostic purposes (loop-back). To receive data from the

 network, the TX output buffer is disabled via the quad latch

 and data is sent through the RX buffer. The 126 has a diode

 in series with the power rail to prevent power scavenging

 when the board is powered down. The remaining buffers are

 unused.

 A 4042 provides the quad buffer. This is connected to the

 lower half of the databus, but only 1 latch is used (on D0),

 the remaining are spare. The chip is enabled by the 139 and

 the output is used to select network direction, a low being

 input and a high output.

 On network stations there is an additional IDC connector

 carrying the remaining address lines required for the EPROM

 (A2-A12), and the chip select (R2~ line). The remaining

 required lines are taken from the first IDC connector (E,

 R/W~, D0-D7). The EPROM maps into $C000-$E000, and then

 network card port addresses at $FF40-$FF43 ($FF42 & $FF43

 are the same).

 On the server, the network card will be mapped into wherever

 the decoder controlling the AD line puts it. A simple

 decoder can be composed of another 74HC139. Connect the P2~

 line from the cartridge port to pin 1 of the decoder chip

 (EA~), and the A4 address line to pin 2 (A0a). Pin 3 (A1a)

 needs to be tied to 0V. Now pin 4 (0a~) provides the decode

 line for the DOS cartridge (the P2~ line connecting directly

 to the DOS cartridge must be disconnected at replaced with

 this output) and pin 5 (1a~) provides the network decode and

 connects to AD~. The disk controller will now be activated

 whenever an address in the range $FF40-$FF4F is present on

 the address bus, but when an address in the range $FF50-

 $FF5F is on the address bus the network card will be

 activated. Therefore, the card's IO will be mapped at $FF50-

 $FF53 ($FF52 & $FF53 are the same).

